University of Science & Technology, Bannu

Final Year Project Proposal
Title: Unified SQL Agent: LLM-Based Natural

Language Interface for SQL Databases

Students Particulars Supervisor

Name: Muhammad Ashan Name: Mr. Salam Ullah Khan

Reg no:

Department of Computer Science
UST Bannu

Signature:

Department of Computer Science UST Bannu

Table of Contents

ADSIIACT. .., 3
L. Introduction. ... e

2. Literature ReVIEW.......oouiiiiii e

3. Problem Analysis........ooiiiiiiiiiii e 5
4. Proposed Solution...........cooiiiiiiiiiiiiiiii e 5
5. Research Methodology........cooviiiiiiiiii 6
6. SYStEM DeSIZN. .. .viiiiiiii e 7
7. Tools and Technologies............cooiiiiiii i 9
8. Expected OUutCOmME......oouniiiii e 9
7. TIMEINE. ..o s e 10
Q. R TENCESES. .ottt 11

2/11

Abstract

This project aims to develop a web-based application that allows users to interact with relational
databases using natural language. Non-technical users often struggle to write complex SQL queries
to extract insights from databases. This system bridges that gap by converting user questions into
accurate SQL queries using the large language model (LLM) via LangChain. It supports multiple
databases, including SQL Server, MySQL, PostgreSQL, and SQLite. The backend dynamically
connects to databases, fetches schema information, generates prompts, and validates/executed
generated queries. The frontend provides a clean interface for users to input their credentials and
questions. The expected outcome is a functional Al agent that increases database accessibility,
especially for business users, enabling them to interact with structured data more efficiently.

1. Introduction

Background:

In the field of data analysis and decision-making, structured data stored in relational databases plays
a vital role. However, accessing this data requires knowledge of Structured Query Language (SQL),
which can be a technical barrier for non-technical users.The integration of artificial intelligence and
natural language processing (NLP) into software systems provides an opportunity to simplify data
interaction.

Problem Statement:

In today’s data-driven world, the ability to extract meaningful insights from relational databases is
essential for informed decision-making across industries. However, many business users, analysts,
and even developers lack proficiency in Structured Query Language (SQL), creating a significant
barrier to accessing and utilizing organizational data. And it creates a dependency on technical teams,
delays in decision-making, and underutilization of valuable data resources.

Although there are tools available that attempt to simplify SQL querying through graphical interfaces
or predefined templates, these solutions often suffer from limited flexibility, require custom training
datasets, or are restricted to specific database management systems. This significantly restricts
scalability and adaptability in real-world, multi-database environments.

Moreover, modern enterprises frequently use a variety of relational database systems including SQL
Server, MySQL, PostgreSQL, SQLite, and Oracle to manage their data. Current solutions rarely
support seamless, real-time interaction across this wide range of platforms, further increasing the
accessibility gap for non-technical users.

Consequently, there is a pressing need for a general-purpose, Al-powered tool that can accurately
translate natural language into executable SQL queries across different databases. Such a solution
should allow users to intuitively query complex datasets without prior SQL knowledge, ultimately
enhancing data-driven decision-making, increasing productivity, and democratizing data access
across organizations.

3/11

Project Objectives:

1. To design and implement a user-friendly web interface that allows users to securely connect to
various types of SQL databases such as SQL Server, MySQL, PostgreSQL, and SQLite for
interactive query generation.

2. To develop a dynamic metadata extraction module that retrieves and formats database schemas in
real-time to aid the Al model in contextual query generation.

3. To integrate a large language model (LLM) for translating natural language questions into valid
and optimized SQL queries tailored to the schema of the connected database.

4. To execute the generated SQL queries and render the results in an interactive and readable format
through the web interface for better decision-making and insight generation.

5. To implement robust logging functionality that captures user queries, generated SQL, and
corresponding outputs, enabling future analysis and debugging.

6. To evaluate the accuracy, efficiency, and scalability of the LLM agent across different databases
and real-world scenarios to ensure reliability and usability.

7. To ensure secure handling of database credentials and enhance the system’s performance and
scalability for potential future integration with enterprise systems.

Scope of the Project:

This project focuses on developing a web-based Al agent that enables natural language to SQL
translation across multiple relational databases. It includes key components such as dynamic
database connectivity, prompt engineering for effective query generation, SQL query validation, and
a frontend interface for user interaction. The system will support popular databases including SQL
Server, MySQL, PostgreSQL, SQLite, and Oracle.

The scope is limited to structured data stored in relational databases and does not include
unstructured data or NoSQL systems. The investigation will cover system design, implementation,
and testing within a limited academic timeframe.

The main deliverables will include a functional web application, integration with large language
models (LLMs), a query logging mechanism, and documentation. This project will not cover
advanced data analytics or predictive modeling beyond SQL query execution.

Significance: The system democratizes data access, empowering users across departments to retrieve
insights without SQL knowledge.

2. Literature Review

Introduction

Structured Query Language (SQL) is essential for accessing relational databases, but it is often
challenging for non-technical users. Natural Language Interfaces to Databases (NLIDBs) aim to
convert natural language queries into SQL, and with the rise of Large Language Models (LLMs), this
transformation has become more efficient [1].

Theoretical Framework

Initial NLIDBs used rule-based systems. Modern approaches leverage LLMs, enabling zero-shot and
few-shot capabilities. Techniques such as Retrieval-Augmented Generation (RAG) have improved
contextual understanding and SQL accuracy [2].

4/11

Historical Background
Text-to-SQL systems evolved from pattern-matching to statistical methods and now deep learning.
LLMs have become a turning point in enabling better comprehension and output of SQL from text

[3].

Current State of the Art

LLMs like ChatGPT show high execution accuracy in SQL generation but still face issues such as
ambiguity and cross-domain generalization. New approaches aim to improve model performance and
user experience [4].

Critical Analysis
Despite notable improvements, limitations such as handling nested queries, computational demands,
and data privacy persist. Further research is required to address these gaps [5].

Emerging Trends
Schema-aware models, domain-specific LLMs, and lightweight architectures are being explored to
enhance accuracy and accessibility of NLIDBs [6].

Synthesis and Integration
NLP and database research are converging through LLMs, providing intuitive access to data.
Innovations in models and evaluation are shaping more effective NLIDBs [7].

3. Problem Analysis

In the modern data-driven world, many non-technical users, such as business analysts and managers,
face challenges in retrieving insights from databases due to their lack of SQL knowledge. Traditional
methods of interacting with databases require writing syntactically correct SQL queries, which
presents a steep learning curve for those without technical backgrounds. This results in reduced
accessibility to critical data insights that could inform decision-making processes. Moreover,
organizations often operate with multiple databases such as SQL Server, MySQL, PostgreSQL, and
SQLite. Manually interacting with each of these in isolation is inefficient and time-consuming. There
is a clear need for a solution that allows real-time, cross-database interaction using natural language
input, making data access seamless, efficient, and accessible to all levels of users.

Challenges

1. Users struggle to formulate SQL queries.
2. Limited accessibility to data insights for decision-making.
3. Need for cross-database, real-time interaction.

4. Proposed Solution

The system is powered by an intelligent Al agent using LangChain, SQLAlchemy, pyodbc, and the
LLM. This integrated approach uses advanced LLMs and dynamic schema access to enable accurate,
real-time query generation across multiple database systems. It includes the following core
components:

e Schema Extractor: retrieves database structure to inform the LLM

e Validator & Executor: ensures SQL syntax is valid, runs the query, and returns results

e LLM Query Engine: processes natural language input and generates context-aware SQL
queries

5/11

5. Research Methodology

The research methodology adopted for this project involves a systematic approach encompassing the
identification of stakeholders, system requirement analysis, design, development, and validation of
the proposed system. This methodology ensures that the system meets user needs and technical
standards effectively.

The project follows a streamlined development process starting with requirement gathering and
design, followed by schema connection and metadata extraction. Prompt engineering and Al
integration enable natural language to SQL translation. Frontend and backend development ensures
user interaction and system functionality, with final integration and testing to validate the solution.

Requirements Analysis:

To solve the problem effectively, the proposed system will dynamically connect to major relational
databases (e.g., SQL Server, MySQL, PostgreSQL, SQLite), convert natural language queries into
valid SQL, execute them, and present human-readable results. It will maintain a log of all
interactions for traceability. Key non-functional requirements include secure credential management,
low-latency responses, an intuitive interface for non-technical users, and a scalable architecture to
support future extensions like voice input and business intelligence (BI) tool integration.

a) Functional Requirements:

i. Language Interface: Ability to input natural language queries.

ii. Database Connectivity: Connection to different databases (SQL Server, Oracle,
PostgreSQL, SQLite).

iii. Query Generation: Conversion of user queries into valid SQL queries using LLMs.

iv. Query Execution: Execution of generated SQL queries and return of results to users.

v. User Authentication: User authentication and access control.

vi. Error Handling: Query validation and error handling.

vii. Session Logging: Logging of query sessions for audit and improvement.

b) Non-Functional Requirements:

i. Performance: System should respond to user queries within 5 seconds.

ii. Scalability: Capable of handling increased load by multiple users and databases.
iii. Usability: Clean, intuitive Ul suitable for non-technical users.

iv. Security: Ensure database credentials are encrypted and access is restricted.

v. Cross-platform Compatibility: Should be accessible via modern web browsers.
vi. Reliability: System must maintain a high uptime and handle exceptions gracefully.

6/11

6. System Design

The system follows a client-server architecture where the frontend interacts with the backend via
RESTful APIs. A typical data flow starts with the user submitting a query, which is passed through
the backend to the LLM for SQL generation, then executed and returned to the user. The use case
involves schema fetching, SQL generation, execution, and result display. The database design
includes a log table to store user queries, generated SQL, and timestamps, while user credentials are
handled through Backend permanent storage.

Architecture: Client-server architecture with RESTful API. Frontend communicates with backend
for all operations.

Data Flow Diagram (DFD):

Level 0: User — UI — Backend API — Gemini — SQL Generator — Result Return

Figure 1: Data Flow Diagram of natural language to SQL LLM agent

Use Cases/Diagrams:

Question Submission Process

Qyestion Setigma SQL. SQL Execution Data Return
Submission Fetching Generation

Figure 2: Use case diagram of natural language to SQL LLM agent

7/11

Database Design:

The database will be designed to support secure multi-user access, credential management for
various databases, and logging of all query interactions. It ensures data integrity, scalability, and
security for a smooth Al-driven experience.

Tables:

1. Users:

Stores user details including name, email, hashed password, and account creation timestamp.

2. Database_Credentials

Holds secure connection info for each user's databases, including type, host, encrypted password, and
database name.

3. Query_Logs

Logs each user’s natural language query, the generated SQL, execution status, response time, and
timestamp.

ER Diagram Unfied SQL Agent — User, Database Credentials & Query Logs
query_logs @
log_id string pkK database_credentials @
db_id tring fl H db_id string pk
user_id string fk users ,(% user_id string fk
natural_query strin _LF user_id 4—f— db_type string
generated_sql string name host string
execution_status strir email port int
response_time_ms ir password_hash username string
executed_at timestamg created_at password_encrypted string
database_name string
created_at timestamp

Figure 3: ER Diagram of natural language to SQL LLM agent

8/11

7. Tools and Technologies:

This project utilizes a combination of modern Al frameworks, backend technologies, and frontend
tools to build a natural language-to-SQL query agent capable of interacting with multiple relational
databases.

¢ Programming Language & Backend Framework:
Python with FastAPI for building efficient and scalable APIs.

o Database Interaction:
SQLAlchemy and inspection tools for dynamic schema extraction and multi-database
connectivity (SQL Server, MySQL, PostgreSQL, SQLite, Oracle).

e Al & Natural Language Processing:
LangChain for prompt engineering and pipeline management, integrated with a Large Language
Model (LLM) API such as Google Gemini or OpenAl for converting natural language to SQL
queries.

¢ SQL Execution & Validation:
Backend utilities to validate and execute generated SQL securely and reliably.

e Frontend Development:
Built using React]JS to create a user-friendly interface tailored for non-technical users.

e Development Process Overview:

e Requirement gathering and system design

e Dynamic schema connection and metadata extraction
e Al prompt integration and query generation

e Frontend and backend implementation

o System integration, testing, and evaluation

8. Expected Outcome

The proposed project will deliver a functional, web-based Al system that enables users to query and
retrieve data from multiple relational databases (SQL Server, MySQL, PostgreSQL, SQLite) using
natural language input. The system will dynamically connect to various schemas, translate queries
using a schema-aware Al agent, execute the SQL, and return results in an easily readable format. It
will also maintain logs of user interactions for tracking and future analysis.

Impact:

The system aims to democratize data access for non-technical users by eliminating the need to write
SQL queries. This will empower business professionals, educators, and analysts to independently
interact with databases, improving decision-making efficiency and reducing dependency on technical
staff.

Evaluation Metrics:
The success of the system will be evaluated based on the following metrics:

e SQL Accuracy: Correctness of Al-generated SQL queries.
9/11

¢ Response Time: Speed of query generation and execution.
o User Satisfaction: Ease of use and perceived usefulness by non-technical users.
¢ Query Success Rate: Percentage of queries executed without errors and with meaningful results.

9. Timeline:

Month 1: Research and setup

Month 2: Backend: Schema and API setup
Month 3: Langchain and LLM integration

Month 4: SQL execution and logging

Project Development Timeline

Start
MONTH 1 MONTH 2
Q 18l B A
Research and Schema Setup API Setup LangCh.ain LLM.
Setup Integration Integration
MONTH 3 MONTH 4
B8] s = =l
SQL Execution Logging Dg;’:::;m Testing Documentation

End

Figure 4: Timeline for development of natural language to SQL LLM agent

10/ 11

10. References

1.

Mohammadjafari et al. (2024) reviewed the evolution of text-to-SQL systems, emphasizing
LLMs and their efficiency and privacy challenges. [https://arxiv.org/html/2410.01066v1]
Liu et al. (2024) discussed data synthesis, prompt engineering, and evaluation metrics in LLM-
powered NL2SQL systems. [https://arxiv.org/abs/2408.05109]

Shi et al. (2024) explored benchmark datasets, prompt strategies, and training methods.
[https://arxiv.org/abs/2407.15186]

Xu et al. (2023) proposed schema-aware decoding to reduce errors in SQL generation.
[https://arxiv.org/pdf/2105.07911]

Zeng et al. (2022) introduced value optimization methods to improve SQL generation from
natural language. [https://arxiv.org/abs/2210.10668]

Li, F. & Jagadish, H. V. (2014). Constructing an Interactive Natural Language Interface for
Relational Databases. VLDB.

7. LangChain Official Docs. LangChain.

SQLAlchemy Documentation. SQLAlchemy.

11/11

https://arxiv.org/html/2410.01066v1
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2407.15186
https://arxiv.org/pdf/2105.07911
https://arxiv.org/abs/2210.10668

	2.Database_Credentials
	3.Query_Logs

